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THE COMPUTATION OF STEADY NOZZLE FLOW

BY A TIME-DEPENDENT METHOD*

Michael C. Cline**
University of California

Los Alamos Scientific Laboratory
Los Alamos, New Mexico 87544

Abstract

The steady flow in two-dimensional and axisymmetric nozzles was

computed using a time-dependent method. In this method the interior mesh

points were computed using the MacCormack finite-difference scheme, while

a characteristic scheme was used to calculate the boundary mesh points.

No explicit artificial viscosity term was included. The fluid was assumed

to be a perfect gas. This method was used to compute the flow in a 45*- 15*

conical, converging-alverging nozzle, a iD- conical, converging nozzle, and

a 10* conical, plug nozzle. Good agreement between the numerical solution

and experimental data was found. In contrast to previous time-dependent

methods, the computational times were less than one minute on a CDC 6600

computer.

*The initial phase of this research was accomplished while the author

held a National Research Council Postdoctoral Resident Research Associate-

ship supported by the NASA Langley Research Center, Hampton, Virginia. Tke

final phase was performed under the auspices of the United States Atomic

Energy Commission.

Index categories: Subsonic and Transonic Flow; Supersonic and Hyper-

sonic Flow; Nozzle and Channel Flow.
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Introduction

The equations of motion governing steady, inviscid flow are of a

mixed type, that is, hyperbolic in the supersonic region and elliptic in

the subsonic region. These mathematical difficulties may be removed by

using the so called time-dependent method. In this technique the flow is

assumed to be unsteady or time-dependent. The governing equations are,.

therefore, hyperbolic in both the subsonic and supersonic regions. The

steady state solution may be obtained as the asymptotic solution for large

time. This technique has been used to compute converging-diverging nozzle

flows by Prozan (as reported by Saunders1 and Cuffel, et al.2), Migdal,

et al. 3 , Wehofer and Moger , Laval5 , and Serra . This technique has also

been used to compute converging nozzle flows by Wehofer and Moger and

Brown and Ozcan 7 . While the results of the above calculations are for the

most part good, the computational times are rather large. In addition,

although the computer program of Ref. 6 included a centerbody and those

of Refs. 4 and 7 included the exhaust jet, none of the above codes is

able to calculate both, that is, plug nozzles. Therefore, the object of

this research was to develop a production type computer program capable

of solving converging, converging-diverging, and plug two-dimensional

nozzle flows in computational times of one minute or less on a CDC 6600

computer.

Literature Review

The following is a discussion of the methods used in Refs. 1 through

7. The first paragraph deals with the computation of the interior mesh

-2-



points while the next three paragraphs are concerned with the boundary

mesh points.

Prozan , Wehofer and Moger, and Laval used variations of the two-step

Lax-Wendroff scheme to compute the interior mesh points. Migdal, et al.,

and Brown and Ozcan employed the original one-step Lax-Wendroff scheme,

but with the equations of motion in non-conservation form. Serra applied

the original Lax-Wendroff scheme with the equations of motion in conserva-

tion form. In order to stabilize their schemes, Laval and Serra used

artificial viscosity terms in their difference equations. Wehofer and

Moger reset the stagnation conditions along each streamline, reset the

mass flow at each axial location, and smoothed the subsonic portion of

the flow after each time step.

In order to compute the nozzle inlet mesh points, Prozan assumed the

inlet flow to be uniform. Wehofer and Moger assumed only that the pressure

was radially uniform at the inlet. Migdal, et al., and Brown and Ozcan

mapped the inlet to minus infinity after Moretti , thus allowing the

static conditions to be set equal to the stagnation conditions. Laval

used extrapolation of the interior mesh points to determine the inlet

mesh points, while Serra employed a characteristic scheme.

Prozan, Wehofer and Moger, Laval, and Brown and Ozean used an extra-

polation technique to compute the wall mesh points. Migdal, et al., em-

ployed a characteristic scheme after Moretti8 to compute the wall mesh

points, while Serra applied a reflection technique. In order for the con-

verging nozzle problem to be properly posed, an exhaust jet calculation must

be included. Wehofer and Moger used an extrapolation procedure to compute

the exhaust jet boundary mesh points, while Brown and Ozcan employed a

characteristic scheme after Moretti8 .
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All of the above authors used extrapolation to compute the exit

mesh points when the flow was supersonic, since any errors incurred

would be swept out of the mesh. Serra employed a characteristic scheme

when the exit flow was subsonic.

Choice of Method

The lengthy computational times associated with time-dependent

calculations are usually due to either inefficient numerical schemes or

poor treatment of the boundaries resulting in the requirement for ex-

cessively fine computational meshes. In the following paragraphs, a

technique for the much more efficient calculation of the interior and

boundary mesh points will be discussed.

The computation of steady flows by a time-dependent method differs

from ordinary initial-value problems in that the initial data and much of

the transient solution have a negligible effect on the final or steady

solution. Therefore, accuracy is important only for the asymptotic state,

and special attention can be given to intermediate efficiency in order

that computational times are made reasonable. For this reason, the in-

terior mesh points can be computed using a very efficient finite-difference

scheme, as opposed to those less efficient finite-difference or character-

istic schemes that achieve high accuracy at every step.

In the class of finite-difference schemes, the two-step methods such

as the MacCormack 0 and the two-step Lax-Wendroff schemes11 are more ef-

ficient than the original Laq-Wendroff schemell, especially if the govern-

ing equations are in conservation form. Moretti1 2 showed that using the

equations of motion in conservation form deceased efficiency and ease of

programming while only slightly increasing the accuracy of shock calculations.
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The use of an explicit artificial viscosity term also decreases efficiency

and was shown to be physically unjustified by Moretti 12. In addition, such

increases in the numerical dissipation can often destroy the weak shock

structure of transonic flows. Therefore, the MacCormack scheme with the

equations of motion in non-conservation form is used to calculate the in-

terior mesh points. No explicit artificial viscosity term was included,

although an implicit dissipation is present as an effect of truncation

terms, which is sufficient to assure numerical stability for the present

flows.

The boundary mesh points, while making up only a small part of the

total mesh points, are the most important to be treated accurately , be-

cause of the flow-field sensitivity to precise boundary geometry. Moretti 8

and Abbett9 showed that reflection, extrapolation, and one-sided difference

techniques for computing solid wall boundaries give poor results and

should be avoided. Therefore, the wall and centerbody mesh points are com-

puted using a characteristic scheme. Likewise, the exhaust jet boundary

mesh points are also calculated employing a characteristic scheme.

In the case of the nozzle inlet mesh points, the use of extrapolation

techniques and the assumption of one-dimensional flow presume the form of

the solution and in many cases are physically unjustified. On the other

hand, a characteristic scheme could be used to calculate the inlet mesh

points. While the stagnation pressure and temperature are assumed to re-

main constant at the inlet in a characteristic scheme, which is not necessar-

ily the case for unsteady flow, this assumption would appear to be valid

for the time-dependent calculation of steady flows. However, Moretti 8

recommends mapping .he inlet to minus infinity, thus allowing the static

-5-



conditions to be set equal to the stagnation conditions. In theory, this

would appear to be the best approach. However, it should be kept in mind

that the infinite physical plane must be replaced by a finite computational

plane. Also, this technique requires additional mesh points upstream of the

nozzle inlet. It is not presently resolved as to whether the characteristic

scheme approach used by Serra or the mapping to minus infinity approach

suggested by Moretti8 and employed by Migdal, et al., and Brown and Ozcan

is the best technique. To reduce the total number of mesh points to be

computed, a charactertistic scheme is used to compute the inlet mesh points.

Extrapolation is used to compute the exit mesh points when the flow is

supersonic and a characteristic scheme is employed when the flow is subsonic.

Equations of Motion

The appropriate non-conservation form of equations for two-dimensional,

inviscid, isentropic, rotational flow are

p + uPx + vp + pux + pvy + Epv/y = 0 (1)

u+ uu + vu + p/p = 0 (2)

Vt + Uv +vv + p /p = 0 (3)

Pt + up + vpy - a (pt + upx +V ) = (4)

where p is the density, u is the axial velocity, v is the radial velocity,

p is the pressure, a is the local speed of sound, t is the time, x and y

are the axial and radial coordinates, and the subscripts denote partial

differentiation. The symbol c is 0 for planar flow and 1 for

axisymmetric flow.
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The physical (x, y) plane is mapped into a rectangular computational

plane (C, n) by the following coordinate transformation;

y-yc(x)
S= x ; =  (x) ; T = t (5)

yw(xt) - yc(x)

where Yw(x, t) denotes the nozzle wall and exhaust jet boundary radius as

a function of x and t and yc(x) denotes the nozzle centerbody radius as a

function of x. In the (t, n, T) coordinate system Eqs. (1) through (4)

become

Pr + up + V p + pu + pau + p~v + epv8/(y +nl/) = 0 (6)

uT + uu + vu + p /P + ap /p = 0 (7)

v T + uv + vvn + 6pn/ = 0 (8)

-2
p + up + VP - a (pT + up + vp) = 0 (9)

where

1 c c
YW - Y cx x ax ( a at

v = au + $v + 6 (11)

The fluid is assumed to be thermally and calorically perfect; that

is, a constant ratio of specific heats.

Numerical Method

The computational plane is divided up into five sets of mesh points.

These five sets are the interior, inlet, exit, wall and centerbody, and

exhaust jet boundary mesh points. The treatment of each of these sets is

given below.
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Interior Mesh Points

The interior mesh points are computed using the MacCormack scheme.

This scheme is a second-order, noncentered, two-step, finite-difference

scheme. Backward differences are used on the first step while forward

differences are employed on the second step. The governing equations are

left in non-conservation form. No explicit artificial viscosity term is

used. Centerline mesh points are computed enforcing symmetry of the flow.

A complete description of the method is given in Ref. 10.

Inlet Mesh Points

The inlet mesh points are computed using a second-order, reference-

plane characteristic scheme. In this scheme the partial derivatives with

respect to n are computed in the initial-value and solution surfaces using

noncentered differencing as in the MacCormack scheme. These approximations

to the derivatives with respect to n are then treated as forcing terms and

the resulting system of equations is solved in the n = constant reference

planes using a two-independent variable, characteristic scheme. The scheme

consists of a first step using backward differences in the initial-value

plane and a second and final step using an average of the backward n dif-

ferences in the initial-value plane and forward n differences in the solution

plane. The bcundary condition is the specification of the stagnation temper-

ature and stagnation pressure. The use of a reference-plane characteristic

scheme requires an additional boundary condition. This additional boundary
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condition is the specification of the inlet flow angle, since in

general the inlet flow angle can be approximately determined from the

nozzle geometry. These three quantities, along with the one Mach-line

compatibility equation, are sufficient to determine the four dependent

variables, u, v, p, and p.

Exit Mesh Points

Subsonic Flow. For subsonic flow a reference-plane characteristic

scheme similar to the inlet scheme is used. The exit pressure is

specified. This pressure, one Mach-line compatibility equation, and two

streamline compatibility equations are sufficient to determine the four

dependent variables.

Supersonic Flow. For supersonic flow the exit mesh points are com-

puted using linear extrapolation. Since any errors incurred here will be

swept out of the mesh, such a procedure should be sufficient.

Wall and Centerbody Mesh Points

The wall and centerbody mesh points are also computed using a

reference-plane characteristic scheme. In this scheme the derivatives with

respect to r are approximated and the resulting system of equations is

solved in the ; = constant reference planes. The wall and centerbody

contours, and therefore, their slopes are specified. The tangency conattion

given by

v - u tan 8 + 3yw/at , (12)

where 0 is the local wall or centerbody angle, one Mach-line compatibility
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equation, and two streamline compatibility equations are sufficient to

determine the dependent variables.

Exhaust Jet Boundary Mesh Points

The exhaust jet boundary mesh points are computed by the wall routine

such that the pressure boundary condition

P = Pambient

is satisfied. This is accomplished by first assuming the shape of the

jet boundary and then using the wall routine to calculate the pressure.

Next, the jet boundary location is slightly changed and a second pressure

is computed. By use of an interpolation-extrapolation procedure, a new

jet boundary location is determined. This interpolation-extrapolation

procedure is then repeated at each point until the jet boundary pressure

and the ambient pressure agree to within some specified tolerance.

When an exhaust jet calculation is made, the nozzle wall exit lip

mesh point becomes a singularity and, therefore, is treated by a special

procedure. This procedure consists of first computing an upstream solution

at the exit mesh point using the flow tangency condition as the boundary

condition and backward t differences in both the initial-value and solution

planes. Next, a downstream solution is calculated using Eq. (13) as the

boundary condition and the total conditions calculated from the upstream

mesh point. The upstream solution is used when computing wall mesh points

upstream of the exit mesh point, while the downstream solution is used

when computing downstream wall mesh points. A third exit mesh point

solution to be used for interior mesh point calculation is determined as

follows. When the upstream solution is subsonic, the two solution Mach

numbers are averaged such that the averaged Mach number is less than or
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equal to one. This Mach number is then used to calculate the exit mesh

point solution to be used to compute the.interior mesh points. When

the upstream solution is supersonic, the upstream solution is used to

calculate the interior mesh points.

Stability

The step size, At, is controlled by the well known Courant condition

which can be expressed as

At S l/[(V+a)(1/Ax 2 + 1/Ay 2)] (14)

where V is the velocity magnitude. Using Eqs. (5) and (10), Eq. (14)

can be written as

AT A/[(V+a)(1/A 2 + 2/ A 2) ]  (15)

where the coefficient A was determined from actual calculations and varied

between 1.0 and 1.6 depending on the geometry of the flow in question.

Overall Program

The nozzle inlet flow as well as the flow leaving the nozzle

may be either subsonic or supersonic. The flow may contain stream-wise

variations in stagnation temperature and stagnation pressure. The nozzle

wall and centerbody geometries may be either one of three analytical con-

tours or a completely general tabular contour. The program is capable of

calculating the exhaust jet boundary for either subsonic or supersonic

flow. The initial data may be either read in or calculated internally by

the program. The internally computed data are calculated assuming one-

dimensional, steady, isentropic flow with area change. The program output

includes the coordinates, velocities, pressure, density, Mach number,

temperature, mass flow, and axial thrust in both English and metric units.
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Results and Discussion

The results in the present study were obtained using a CDC 6600 com-

puter. The computational times given are the central processor time not

including compilation. In order to compare these results with those of

other investigators, the following table of relative machine speeds is

given.

Computer Relative Machine Speed

IBM 7094 0.1

IBM 360/50 0.1

IBM 360/65 0.3

IBM 360/75 0.5

Univac 1108 0.5

CDC 6600 1.0

These relative speeds were obtained from Refs. 13 and 14 and are only

rough estimates. These values may vary considerably depending on the

compiler, machine configuration, and numerical technique. The initial

data in each case were the one-dimensional values computed internally by

the program. When the relative change in axial velocity in the throat

and downstream regions was less than a prescribed convergence tolerance,

the flow was assumed to have reached steady state. The convergence

tolerance was found to be a function of the mesh spacing, flow speed, and

nozzle geometry. For the results presented here a convergence tolerance

of 0.003 per cent for flows without exhaust jet calculations and 0.005 per

cent for flows with exhaust jet calculations was employed.

The present method was used to compute the steady state solution for

flow in the 45* - 150 conical, converging-diverging nozzle shown in Fig. la.

The Mach number contours and wall pressure ratio are shown in Fig. 2.
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The experimental data are those of Cuffel, et al. The computed discharge

coefficient is 0.983 as compared with the experimental value of 0.985.

A 21 x 8 computational mesh was used, which required 301 time planes and

a computational time of 35 seconds. In general, there is good agreement

with the experimental data. This case was also solved by Prozan , Migdal,

et al., Laval, and Serra. While the details of Prozan's computation were

not reported by Cuffel, et al., Saunders reported a time of 45 minutes on

a CDC 3200 (23 x 11 mesh) for computing the flow in a nozzle with a large

radius of curvature. Migdal, et al., reported a computational time of

less than 5 minutes on an IBM 360/75. Laval reported a computational time

on the order of 2 hours on an IBM 360/50 (61x 21mesh). Serra reported a

computational time of 80 minutes on a Univac 1108 (3000 mesh points). In

addition, this case was also solved by Prozan and Kookerl
5 using a re-

laxation scheme to solve the irrotational equations of motion. They re

ported a computational time of 5 to 10 minutes on an IBM 7094 (21xll mesh).

The present method was also used to compute the steady state flow in

a 150 conical, converging nozzle. The nozzle geometry is shown in Fig. lb.

The Mach number contours and wall pressure ratio for a nozzle pressure

ratio of 2.0 are shown in Fig. 3. The experimental data are those of

Thornock1 6 . The computed discharge coefficient is 0.957 as compared with

the experimental value of 0.960. A 23 x 7 computational mesh was used,

which required 249 time planes and a computational time of 29 seconds.

In general, there is good agreement with the experimental data. This

case was also solved by Wehofer and Moger and Brown and Ozcan. Wehofer

and Moger's solution for a pressure ratio of 2 required over 2 hours on

an IBM 360/50 (47 x11 mesh), while Brown and Ozcan's results required 17

minutes on an IBM 360/65 (20 x6 mesh).
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Finally, the present method was used to calculate the flow in a 100

conical, plug nozzle. The nozzle geometry is shown in Fig. 1c. The

Mach number contours and plug pressure ratio for a nozzle pressure

ratio of 3.29 are shown in Fig. 4. The experimental data are those of

17
Bresnahan and Johns . A 31 x 6 computational mesh was used, which required

327 time planes and a computational time of 52 seconds. In general, there

is good agreement with the experimental data. The author is unaware of

any other time-dependent analysis of plug nozzles.

Concluding Remarks

A method of computing nozzle flows has been presented. A production

type computer program capable of solving a wide variety of nozzle flows

has been developed. The accuracy of this program was demonstrated by

computing the flow in a 450 - 150 conical, converging-diverging nozzle,

a 15* conical, converging nozzle, and a 100 conical, plug nozzle. The

computational times were less than one minute on a CDC 6600 computer,

which is considerably faster than any of the previous time-dependent

techniques.
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